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Abstract: 
Agroindustry needs novel materials to replace synthetic plastics. This article introduces sodium alginate films with antioxidant 
properties. The films, which were incorporated with hydroalcoholic extract of Macrocystis pyrifera L., were tested on sliced Hass 
avocados.
The research featured sodium alginate films incorporated with hydroalcoholic extracts of M. pyrifera. Uncoated avocado halves 
served as control, while the experimental samples were covered with polymer film with or without hydroalcoholic extract. A set 
of experiments made it possible to evaluate the effect of the extracts on polymeric matrices, release kinetics, and sensory profile 
of halved Hass avocados.
A greater concentration of hydroalcoholic extracts increased the content of phenolic compounds and their antioxidant activity. As 
a result, the bands in the carboxylate groups of sodium alginate became more intense. Crystallinity decreased, whereas opacity 
and mass loss percentage increased, and conglomerates appeared on the surface of the films. These processes fit the Korsmeyer-
Peppas kinetic model because they resulted from a combination of diffusion and swelling mechanisms in the films. 
The films incorporated with hydroalcoholic extract of M. pyrifera proved to be an effective alternative to traditional fruit 
wrapping materials.
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INTRODUCTION
Polymers, popularly known as plastics, are usually 

synthetic or semi-synthetic organic compounds with 
a high molecular weight. These materials are used 
in almost all industrial sectors. As a result, the total 
amount of plastics manufactured in the world since 1950 
exceeds 8000 Mt [1]. However, its production generates 
pollutants and greenhouse gases, e.g., carbon dioxide 
(CO2), which contribute to environmental pollution and 
global warming [2].

However, conventional polymers can be replaced 
by biodegradable materials made of fats, vegetable oils, 
gluten, proteins, and polysaccharides [3].

Bioplastics are defined as materials produced by 
living organisms. They are biobased, biodegradable, 
or both and are used in many sectors, including food 
processing, agriculture, compost bags, etc. [4].

Red (Rhodophyta), green (Chlorophyta), and brown 
(Phaeophyta) macroalgae possess a great chemical 
diversity of primary and secondary metabolites with 
numerous beneficial properties and a good application 
potential. They have increasingly attracted attention  
of many industrial branches, including plastics pro- 
duction [5]. 

Brown macroalgae contain secondary metaboli- 
tes with antioxidant, anti-inflammatory, and anti- 
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microbial [6, 7] properties. Macrocystis pyrifera is one 
of the most popular representatives of this group [8].

M. pyrifera L. is a low-calorie product with a high 
concentration of mineral ions (Mg2+, Ca2+, P5+, K+, I–), 
vitamins, low lipid content, alginates, and poly- 
phenols [9].

Polyphenols are antioxidant compounds that delay 
or prevent the oxidation of oxidizable molecules [10].  
As a result, they reduce food deterioration when they  
are incorporated directly into food itself or its  
packaging [11].

Alginate is a polysaccharide that consists of 
β-D-mannuronic and α-L-guluronic acids [12]. It is 
biocompatible, biodegradable, low-toxic, and easily 
available, which causes a great commercial inte- 
rest [13]. Alginate-based films and coatings are flexible 
and glossy; they possess excellent water solubility and 
emulsification capacity, as well as low oil and oxygen 
permeability [14].

In the food industry, alginate-based films provide 
temporary protection against water loss. Such films 
prolong the shelf life of fruits and vegetables by 
inhibiting post-harvest metabolic processes, i.e., aging 
and rotting [15]. Alginate-based films are prospec- 
tive vehicles for polyphenolic compounds, which 
migrate, partially or totally, from the film onto the food  
surface [16, 17].

The extract leaves the polymeric matrix by diffusion 
throughout or swelling of the matrix. Eventually, the 
release rate decreases because the material swells, and 
the active agent has to cover a greater distance to exit 
the system. This diffusion process is governed by Fick’s 
law, in which the concentration is proportional to the 
diffusion flux density.

However, some swelling-produced systems generate 
a slow migration, which results in a balance between 
the internal and external environments. Considering 
these processes, Higuchi proposed that release occurs 
as a function of the square root of time (Eq. (1)),  
while Korsmeyer et al. considered that the release 
depends on material dissolution or structural ef- 
fects (Eq. (2)) [18, 19]:
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where Mt/M∞ is the fraction of solute that has been 
released at time t, and K is the release rate constant;
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where K is a constant that incorporates structural and 
geometric characteristics of the release system, and n is 
the exponent that indicates the release mechanism.

This research focused on the antioxidant effect of 
sodium alginate films with hydroalcoholic extract of  
M. pyrifera on Hass avocado.

STUDY OBJECTS AND METHODS
Materials. All solvents and reagents were of 

analytical grade. Medium viscosity brown algae so- 
dium alginate, glycerol 99%, average weight poly 
(ethylene) glycol Mn 400, sodium carbonate, the Folin-
Ciocalteau reagent 2N, gallic acid, and 1,1-diphenyl-2-
picrylhydrazyl (DPPH) were purchased from Sigma-
Aldrich. Ethanol and methanol were produced by Merck. 
The hydroalcoholic extract of brown macroalgae was 
prepared from Macrocystis pyrifera L., collected in the 
district of Paracas (Ica, Peru). The Hass avocado fruits 
were collected from the Province of Chincha (Ica, Peru) 
and stored at 8°C until the application of the films.

Extraction of brown macroalgae with a hydro- 
alcoholic solution. To produce the extracts, we 
macerated 10 g of dry and ground brown macroalgae 
with 100 mL of a hydroalcoholic ethanol:water solution 
(70:30, v/v ). The mix was stirred at 35°C in an amber 
bottle for 24 h. Then, the mix was filtered, and the solid 
residue was macerated again with the hydroalcoholic 
solution. The resulting supernatants were combined and 
concentrated with a vacuum evaporator to a volume of 
100 mL. The resulting product was stored at 10°C.

Determination of the total phenolic content. The 
total phenolic content of the hydroalcoholic extract was 
revealed by the Folin-Ciocalteu method, and the results 
were expressed in gallic acid equivalent per 100 g of 
brown macroalgae (mg GAE 100 g–1) [20]. According 
to the standard procedure, 1 mL of the hydroalcoholic  
M. pyrifera extract was mixed with 0.6 mL of the 
Folin-Ciocalteu reagent. After that, we added 3.2 mL 
of an aqueous solution of sodium carbonate (Na2CO3,  
7.5%, w/v). The resulting mix was brought up to 12 mL 
with ultrapure water and stirred at room temperature 
in the dark for 60 min. Finally, its absorbance was 
measured at 765 nm using a Lambda 25 UV-Vis 
spectrophotometer (Perkin Elmer).

Determination of the free radical capture capacity 
(DPPH method). Antioxidant activity. The antioxidant 
activity was determined using the 1,1-diphenyl-2-
picrylhydrazyl (DPPH) method [21]. According to 
the standard procedure, 1 mL of the hydroalcoholic  
M. pyrifera extract was mixed with 1 mL of methanolic 
solution of DPPH (0.36 mmol L–1) and 2 mL of methanol. 
The mix was stirred and left at room temperature in the 
dark for 30 min. Then, its absorbance was measured at 
517 nm.

The results were expressed as the inhibition 
percentage of the DPPH radical according to Eq. (3):
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where AC is the control absorbance (DPPH), and AE is the 
extract absorbance.

Preparation of the films incorporated with 
hydroalcoholic extract. We added a mix of plasticizers 
(ethylene glycol and polyethylene glycol) to 30 mL 
of sodium alginate polymeric solution 1.5% (w/v) at 

(3)
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a ratio of 9:1 (w/w) under constant stirring at 70°C for  
60 min. Subsequently, we added 5 mL of extract solution 
in a range between 3 and 6 % (w/v). The solution was 
obtained from the stock solution of M. pyrifera extract. 
The resulting mix was stirred at 70°C for 30 min. Finally, 
the solutions were molded and dried at 50°C for 24 h.

Description of the films incorporated with 
hydroalcoholic extract. The opacity was reduced 
from the transmission values   and the film thickness 
as in Eq. (4). The mean thickness value was registered 
using a mechanical micrometer (Mitutoyo 103-
137) with a precision of 0.01 mm. The transmittance 
value was obtained by cutting the films into square 
pieces (20×20 mm). The pieces were placed in the 
support of solid samples of a Varian Cary® 50 UV-Vis 
spectrophotometer. The spectra were registered at 300–
1000 nm [22].
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where T is the light transmittance of the film at 600 nm, 
and d is the sample thickness, mm.

The FTIR spectra were obtained by Attenuated Total 
Reflectance (ATR) using an IRPrestige 21 Shimadzu 
spectrophotometer at 600–4000 cm–1 after acquisition 
of 20 scans at a resolution of 4 cm–1 for each spect- 
rum. Thermogravimetric curves were gathered in an  
SDT Q600 simultaneous TG/DTA modulus managed by 
the Thermal Advantage for Q Series software (v. 5.5.24), 
both from TA Instruments. 

The measurements were performed using sample 
amounts of 5.0 ± 0.1 mg in a dynamic N2 atmosphere 
flowing at 50 mL min–1. The temperature range was 
selected as 25–800°C with a heating rate of 10°C min–1. 
The XRD diffractograms were obtained in a range of  
2 θ from 5 to 100° in a D8 Advance diffractometer 
(Brüker) equipped with a Cu source (Kα = 1.5418 Å) 
and a LynxEye model PSD type detector. The 
diffractometer operated at a voltage of 40 kV and  
40 mA (1600 W). The SEM images were obtained with 
an LEO 440 microscope (Cambridge) equipped with a  
7060 detector (Oxford) at resolutions of 10 and 1 µm 
with a magnification of 1000× and 5000×, respectively. 

The samples were gold-plated in an MED 020 (Bal-Tec) 
high vacuum metallizer.

Release test of hydroalcoholic extract. The 
alginate films incorporated with hydroalcoholic extract 
of M. pyrifera were immersed in 25 mL of a 70% 
ethanolic solution at 10°C and stirred at 100 rpm. For 
measurement purposes, 2 mL of release medium were 
withdrawn at predetermined times. Its absorbance 
was determined at 271 nm using a UV-1800 UV-Vis 
spectrophotometer (Shimadzu). This aliquot was re- 
turned after reading, and the system was kept under 
stirring until the next reading [23].

Food protection test. The antioxidant activity of the 
films with hydroalcoholic extracts was tested on halved 
Hass avocados. The cut face was covered with simple 
films and those incorporated with hydroalcoholic extract. 
The research involved an additional Hass avocado test 
without coating, which was marked as control sample C. 
The tests were carried out at 8°C and 50–60% relative 
humidity on storage day 21.

RESULTS AND DISCUSSION
Total phenolic content and antioxidant activity 

of extracts. A 10-g sample of Macrocystis pyrifera L. 
yielded 6.86% in the extraction of the hydroalcoholic 
extract. Its concentration was 10% w/v, the TFC was 
74.2 mg GAE 100 g–1, and the percentage inhibition was 
61.0%.

After that, 3 and 6% solutions were prepared 
from diluted stock solution. They were presented as 
a total polyphenol content of 25.4 and 48.5 mg GAE  
100 g–1, with inhibition percentages of 22.2 and 41.2%, 
respectively. The obtained results were consistent with 
available scientific publications on M. pyrifera. Table 1 
shows the total phenolic content values    for each solution.

Table 1 Antioxidant activity of Macrocystis pyrifera extract at 
different concentrations

Extract %, w/v Total phenolic content,  
mg GAE 100 g–1

DPPH radical 
scavenging, %

3.0 25.4 ± 0.2 22.2 ± 0.2
6.0 48.5 ± 0.3 41.2 ± 0.4
10 74.2 ± 0.3 61.0 ± 0.1

Figure 1 Films obtained from sodium alginate: (a) base film (no extract); (b) film with 3% hydroalcoholic Macrocystis pyrifera 
extract; and (c) film with 6% extract

            a                                                              b                                                            c
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Sodium alginate films. We prepared three alginate 
films, namely the base film, which contained no hydro- 
alcoholic extract, and films contained 3 and 6% of 
hydroalcoholic extract. Figure 1 depicts the obtained 
films: the hue darkened as the concentration of the 
hydroalcoholic extract increased.

Optical properties of films. Average thickness 
and UV-Vis spectrum described the opacity of the 
films (Fig. 2a). The obtained transmittance percen- 
tage was ≥ 80% in the region of 500–800 nm. The 
transmittance decreased as the hydroalcoholic extract 
concentration increased because it had a photoprotective 
effect [24]. The opacity also increased, which means that 
the extracts were not homogeneously distributed in the 
polymeric matrix of the films.

Table 2 shows the transmittance value of the films 
at 600 nm (visible light), as well as their corresponding 
opacity. The transmittance percentage of the base 
film was 90.21%. As the concentration of the extract 
increased, the value fell down to 87.96 and 85.26% in 
the films with 3 and 6% of the extract, respectively. The 
opacity was calculated at a wavelength of 600 nm. It 
demonstrated a slight increase as the concentration of 
the M. pyrifera extract increased.

Table 2 Transmittance and opacity values of films in the 
visible spectrum

Film Thickness,  
mm

T600,  %
a Opacity, a.u. 

(nm/mm)
Base (no extract) 0.185 90.2059 0.24
With 3% 
Macrocystis pyrifera 
extract

0.173 87.9631 0.32

With 6% 
Macrocystis pyrifera 
extract

0.178 85.2594 0.39

a T600 % is the transmittance percent of each film at 600 nm

Figure 2 Light transmittance (a), FTIR spectrum (b), TG curves (c), and XRD diffractograms (d) of films from sodium alginate 
(base) and sodium alginate with 3 and 6% of Macrocystis pyrifera extract
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FTIR of the films. Figure 2b illustrates the FTIR 
spectrum of the films under study. The increase in the 
concentration of the extracts intensified the bands 
corresponding to the symmetric stretching COO– at 

1409 cm–1, torsional vibrations and swinging of –CH2 at 
1350–1150 cm–1, C-O stretching of the pyranose ring at 
1099 cm–1, and C-O stretching at 1028 cm–1 of sodium 
alginate [25–27]. The obtained results revealed an 
interaction between the polar groups of the polymeric 
matrix and the polyphenolic compounds of the extract.

Thermogravimetry. Figure 2c presents the thermo- 
gravimetric curves of the films with mass losses that 
were assigned to the following steps: dehydration, film 
degradation, polymer degradation, and carboniza- 
tion [28]. As the extracts became more concentrated, the 
mass loss in the films increased, especially in the film 
with 6% of the extract. However, if the concentration of 
the extract was lower, the mass loss decreased during 
this step, and a better extract-film interaction was 
assumed. Table 3 summarizes the thermal events, mass 
loss, and respective temperature intervals

X-ray diffraction analysis. The X-ray diffraction 
diffractogram in Fig. 2d demonstrates a broad peak 
between 20 and 30°. It presents the diffraction pattern 
of the amorphous structure of the sodium alginate film 
plasticized with glycerol and PEG 400 (base film). The 
crystallinity percentage of the base film was 39.3%. 
However, it reached 39.1% when it was incorporated 
with 6% of the extract. The low concentration of the 
extract brought up the crystallinity to 43.1% in the film 
with 3% of the extract. Therefore, the microstructure of 
the incorporated film was more homogeneous when the 
concentration of the extract was lower.

Scanning electron microscopy analysis. The 
scanning electron microscopy images (Figs. 3a, 3b, 
and 3c) showed a rough and homogeneous surface 
(Fig. 3a) with clusters on the surface, which increased 
the concentration of the M. pyrifera extract (Figs. 3b 
and 3c). The obtained result shows how the secondary 
metabolites migrated towards the avocado surface.

Kinetic behavior of hydroalcoholic extract 
release. Figure 4 shows the release curve of the extract 
at 271 nm for 300 min of testing. Figure 5 indicates the 
profile of the film with 3 and 6% extract according to 
the Higuchi model. Figure 6 shows the profile according 

Table 3 Mass loss values: thermogravimetric analysis of films obtained from sodium alginate with/without Macrocystis pyrifera 
extract

Film Weight, mg Thermal event ∆T, °C Mass loss, %
Base (no extract) 5.176 Dehydration 25.0–119.8 22.8

Film degradation 119.8–320.8 61.1
Polymer degradation 320.8–672.5 5.38
Carbonization 672.5–800.0 5.14

With 3% Macrocystis pyrifera extract 5.142 Dehydration 25.0–109.7 23.9
Film degradation 109.7–325.5 57.0
Polymer degradation 325.5–638.2 4.00
Carbonization 638.2–800.0 7.87

With 6% Macrocystis pyrifera extract 5.105 Dehydration 25.0–113.6 24.8
Film degradation 113.6–314.1 61.9
Polymer degradation 314.1–617.3 5.68
Carbonization 617.3–800.0 9.86

Figure 3 Scanning electron microscopy images of films:  
(a) base film; (b) film with 3% extract; and (c) film with 6% 
extract

                  b

                  c

                  a
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to the Korsmeyer and Peppas model. In both cases, the 
film with the 3% extract had higher constants R2 and n. 
However, the film with the 6% extract could continue 
to release. The release percentage was not complete 
because the extract contained polyphenolic compounds: 
their hydroxyl groups can interact with related groups of 
alginate or plasticizer [23]. 

Table 4 shows kinetic parameters K and n calcu- 
lated according to Eqs. (3) and (4). As n ≤ 0.5, the  
swelling and porosity provided a partial diffusion 
mechanism [29].

Food protection test. In Fig. 7, the endocarp of the 
control sample (uncoated avocado) is brown around the 
stone, and so is the sample coated with the base film 

(no M. pyrifera extract). However, as the concentration 
of the hydroalcoholic extract increased, the browning 
intensity around the stone decreased. As a result, the 
browning in the sample covered with the film with the 
6% extract was less intense in color, compared to the 
avocado covered with the film with the 3% extract. This 
result proves that the extract migrated from the film onto 
the fruit surface.

Figure 4 Release profile of Macrocystis pyrifera extract in 
alginate films with 3 and 6% hydroalcoholic Macrocystis 
pyrifera extracts

Table 4 Kinetic parameters of films from sodium alginate 
with Macrocystis pyrifera extracts according to Higuchi and 
Korsmeyer-Peppas

Film Higuchi Korsmeyer-Peppas
KH R2 n R2

3% extract 6.31×10–4 0.9764 0.42 0.9894
6% extract 2.99×10–4 0.9918 0.35 0.9982
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Figure 6 Release profile according to the Korsmeyer and 
Peppas model.

Figure 7 Hass avocado halves on days 1, 7 and 14 of storage. 
Epicarp, mesocarp, and endocarp of Hass avocado on day 21. 
(a) Uncoated (control); (b) coated with the base film  
(no extract); (с) coated with the film from sodium alginate with 
the 3% Macrocystis pyrifera hydroalcoholic extract; and  
(d) coated with the film from sodium alginate with the 6% 
extract

                       a                    b                   c                   d

Day 21

Day 14

Day 7

Day 1
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On day 21, none of the samples showed any evi- 
dence of browning. Therefore, the interior of the fruit 
remained intact under the experimental conditions 
of 8°C and 50–60% relative humidity. However, the 
epicarp in the control sample and the avocado coated 
with the base film had a little mold caused by humidity, 
which was absent in the samples coated with the films 
with the M. pyrifera extracts.

CONCLUSION
The hydroalcoholic extracts interacted with the 

polymeric matrix of sodium alginate. The increase 
in their concentration affected the surface and the 
microstructure of the films, resulting in a greater mass 
loss during degradation, a more intense opacity, and 
a lower crystallinity percentage. However, when the 
concentration was lower, it facilitated the distribution 
within the polymeric matrix. Alginate films proved to 

be good vehicles for the administration and release of 
Macrocystis pyrifera extracts. If used as fruit coating, 
this film can reduce browning.
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