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Abstract: This work offers a view on the outcomes of a study focusing on ultrafiltration of curd whey treated on the 
basis of the membrane electroflotation method in order to ensure more complete extraction of whey proteins when 
processing recoverable dairy crude. The feature that makes the method different is the presence of membranes 
between the anode and the cathode while the machines for membrane electroflotation are designed so that current 
does not run through the whey. To determine the element composition of whey prior to and after electroflotation the 
method of electron probe X-ray microanalysis was used. It has been shown that the filtration rate of whey treated 
through electroflotation nearly doubles up if compared to the initial rate. There has also been detected the 
dependence related to the impact that the concentration of solids and the pressure have on the filtration rate; besides, 
the kinetics of the ultrafiltration process has been investigated. The method of electron probe X-ray microanalysis 
was employed to study the element composition of whey both before and after the electroflotation treatment. The 
increase in the whey ultrafiltration rate after electroflotation can be explained by a growing Hydrogen index and a 
reduced concentration of Calcium after electroflotation. Besides, a quantitative physical model of whey 
ultrafiltration was developed, which takes into view specific features of polarization layer formation. The model 
implies conditional division of whey flow at the membrane surface into two streams – a normal one and a tangential 
one. Part of the protein molecules transported by the normal flow settles on the membrane surface while the other 
part of them remains near the surface up until it is pushed into the whey bulk by protein molecules of the tangential 
flow. That all mentioned above fixes certain elements of newness in the field of membrane technologies. The study 
was performed at the Voronezh State University of Engineering Technologies and the North Caucasus Federal 
University (Russian Federation). 
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INTRODUCTION 

Membrane technologies are the basis for low-waste 
and even non-waste (in case proper arrangements are 
made) dairy productions [1]. However, their wide 
implementation is limited, in particular due to low 
production capacity of membrane machines. 

This also holds true for ultrafiltration separation of 
protein from milk whey [2]. Intensification of this 
process takes, first of all, minimization of protein 
deposit on the membrane surface. For instance, 
preliminary treatment of heated whey with ultrasound 
will reduce the membrane congestion and the amount 
of the protein deposit [3]. However, after numerous 

regular cleanings membranes increase their 
hydrodynamic resistance, which must be due to the fact 
that the pores get stuffed with protein from the inside 
surfaces [4]. 

If the impact of protein deposit could be minimized 
in any way, then concentration polarization will be the 
factor limiting the permeate flow through the 
membrane [5]. Thus, if for filtering sheep cheese                      
whey membranes are used that are made of                 
composite fluoropolymer, this allows a larger                      
flow of permeate compared to polysulfone                    
membranes, and protein deposits are minimum,                      
while the dependency between the filtration rate                      
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and the pressure is typical of concentration             
polarization [6]. 

Whey acidity has a significant impact on the degree 
of protein deposit. The major role in reducing 
membrane permeation in case of changing рН belongs, 
obviously, to β-lactoglobulin. This is suggested with 
the following experimentally obtained data. In the рН 
range of 3.9–4.65, the filtration capacity goes down 
along with the growing рН [7]. At the same time, there 
is data [8] showing that under a decreasing hydrogen 
index down to рН 4.65, a high concentration and a low 
ionic strength of the solution, the solubility of                        
β-lactoglobulin goes down sharply. The results 
obtained through scanning electron microscope 
investigation [9] suggest that filtration of β-lacto-
globulin solutions leaves the membranes with some 
deposit appearing as thick layers. Transmission 
electron microscopy of membrane cross section [10] 
shows that similar deposits with incorporations of α-
lactalbumin globules are also to be found in case of 
milk whey filtration. The рН range where the whey 
filtration rate is minimum (рН 4.6–5.5) is close to                 
the range where isoelectric points of various β-lacto-
globulins can be found (рI 4.9–5.4) [11, 12]. 

Since the рН of curd whey lies within this range, its 
ultrafiltration is more complicated than that of cheese 
whey. Neutralization of cheese whey with correcting 
chemical agents in most cases results in its reduced 
organoleptic features and increased allergenic capacity [13]. 

This is why there is a lot of interest taken in 
reducing curd whey acidity with electrophysical 
methods, e.g. electrodialysis [14] or membrane 
electroflotation. Membrane electroflotation is different 
from conventional electroflotation used for protein-
containing solutions by the presence of a membrane 
between the cathode and the anode, while the machines 
themselves are arranged so that the electric current 
does not go through whey. Treatment this way 
improves the product’s organoleptic features, while the 
hydrogen index goes up as well [15]. 

Electroflotation results in 20–30% of protein 
eliminated from whey. One of the areas for using 
floated whey could be ultrafiltration treatment aiming 
at more thorough extraction of proteins. This is what 
the present work is focused on. 

 
OBJECTS AND METHODS OF STUDY 

In the ultrafiltration device used for the experiment, 
retentive mechanism/block moves round. There were 
track-etched polyethylene tetraphtalate membranes 
used, with a pore diameter of 60 nm. The filtration rate 
of distilled water in the ultrafiltration cell was                       
12 ml/min (pressure – 0.2 MPa) (filtration rate her 
means the volume of filtrate that has passed through 
the membrane as per a single unit of time). The 
required level of рН, while the samples of whey were 
prepared, was reached through adding NаОН or НС1. 

For electron probe X-ray microanalysis the whey 
was first dried, after which scanning electron 
microscopy was used to select several areas (0.2 mm) 
within the obtained powders for further microanalysis. 

EXPERIMENT OUTCOMES 
For 10 minutes following electroflotation, the whey 

рН goes up from 5.0 to 6.05. The filtration rate of 
whey that has been treated this way nearly doubles if 
compared to untreated whey (Fig. 1). 

Further electroflotation whey treatment would not 
increase the filtration rate any more. The results 
obtained through the experiment indicate that there is a 
certain value in ultrafiltration of floated whey as well 
as in further research in the area. 

Fig. 2 shows the dependence of curd whey filtration 
rate on the dry substance concentration, measured 
under рН = 4.8 and рН = 6.6. The charts demonstrate 
that the filtration rates at рН close to the values in                 
Fig. 1 reveals a difference of 1.7 times. 
 

 
 
 

Fig. 1. Filtration rate for initial (pH = 4.5) and  
floated (pH = 6.05 and pH = 7.4) wheys (t = 30°C, 
p = 0.2 МPa). 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Relationship between curd whey filtration                 
rate and concentration of dry substances: (1) pH = 4.8; 
(2) pH = 6.6. 
 

Therefore, the filtration rate growth for the floated 
whey, if compared to the initial whey, is mostly due to 
a significant change in the whey hydrogen index 
through electroflotation. The smaller angles in the 
charts at 3–6% concentrations of dry substances mean 
that the 10–15% reduction in the protein concentration 
in the floated whey, if compared to the initial whey, 
has virtually no impact on the filtration rate.  
Therefore, it is most likely that there are two factors 
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Within time t  the point А will be reached by the 
Ncross number of cross flow molecules: 

 

    
1t
tNcross = ,                               (4) 

 

as well as by those of the tangent ail flow Nt: 
 

  
2t
tN =τ .                                (5) 

 

Now let us calculate the number of the molecules 
remaining on the surface as a result of impacts: 

 

PNNN icrossrem ⋅−= ,                  (6) 
 

where Р is the probability of an approaching molecule 
to be knocked out. Assume that within the time t2, there 
were 10 molecules of the normal consequently 
approaching the boundary between impacts. The time 
for staying at the boundary for the first molecule is 
10t1, 2nd – 9t1, the last one – t1. Let us take τ0 = 3t1. In 
this case the tenth, the ninth, and the eighth molecules 
may be knocked out at impact, while the others may 
not. The knock out probability Р is: 
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Since 10 is the number of the molecules that 
approached the boundary within a time interval 
between the impacts, then: 

 

1
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2
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In case the polarization layer is mostly developed 
faster than steady protein distribution takes place in the 
boundary layer, then the cross velocity of protein 
molecules ve shall be approximately equal to the 
velocity of the filtrate flow passing through the 
membrane vf. 

Using (2), (3), (4), (5), (9) in (6), in view of Ni = Nτ 
we shall get: 
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The developing polarization layer shapes, on the 
membrane surface, another membrane, through which 
whey is filtered. 

In view of the hydraulic resistance and the 
membrane porosity, the Kozeny–Carman equation [17] 
could be modified as follows: 

 

la
Pkv m

f +
⋅

=
1

0ε
,                        (11) 

 

where is the coefficient k0 depends on the filtrate 
viscosity, the microstructure and porosity of the 
polarization layer, εm is the membrane porosity, a1 is 
the parameter taking into account its hydraulic 
resistance. 

Joining the polarization layer thickness l with the 
number of protein molecules that constitute it, we will 
have the following formula: 
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Where S is the area of the polarization layer, Spor is the 
total area of the pores that can be determined from the 
porosity of the polarization layer, mμ is the mass of a 
protein molecule, Nrem is the number of protein 
molecules, and ρpr is its density. 

Solving the equation system (10–12) regarding υf in 
view of (3) we shall get: 

( ) ( )
c

pkcvkttvkctvkc

pkv f

+
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −⋅⋅−⋅⋅++⋅⋅+−
=

2
4)( 1

2222

1

τττ

.                  (13) 

Here 

2
0

3
0 τ⋅= Сk ,  01 kk m ⋅= ε ,  

( )
μ

ρ
m

SSa
с porpr −⋅
= 1

. 

 
The formula below could be used to calculate the 

volume of the filtrate developing within the time t : 
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The dependence of the filtration rate on the 
pressure, as calculated following the formula (13), as 
well as the kinetic curve determined through 
integration of this formula, lay within satisfactory 
agreement with the experimental ones (Fig. 3, 4). More 
accurate data could be obtained taking into account the 
specific hydrodynamic features of whey flowing 
through a canal of a certain shape. 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Theoretical (1) and experimental (2) 
dependencies of filtration rate on pressure. 
 

Let us accept that, following [18], the major role in 
β-lactoglobulin molecular interaction belongs to 
hydrophobic and electrostatic interactions, which may 
result in aggregation of proteins based o the 
mechanism described, for instance, in [19]. During 
that, the electrostatic interactions among protein 
globules are of local nature [20]. Then the condition for 
a molecule’s getting fixed in the polarization layer will 
imply three events coming simultaneously – a position 
of a proper molecule that would ensure its touching the 
polarization layer with the hydrophobic area; the 

presence of a hydrophobic area on such a molecule at 
the spot of contact with the polarization layer, and not 
very strong an electrostatic repulsion between the areas 
of globules approaching one another. In case the рН of 
the solution is high enough, then the last condition 
often fails to be met, the time τ0 gets longer and, 
respectively, following (13), (14)  the filtration rate is 
growing, which is observed in case of floated whey 
filtration. Electroflotation treatment for curd whey, 
which leads to a growth in the protein molecule 
negative charge, is likely to prove especially useful 
when using negatively charged membranes [21] that 
improve significantly ultrafiltration productivity. Due 
to a lower level of Са in concentrates of curd whey 
after it has been subjected to electroflotation treatment, 
they can be recommended to elderly people, since milk 
and dairy products may have a negative effect on the 
health in the elderly age, that is due to specific features 
about calcium absorption, which facilitates 
atherosclerosis [22]. 
 

CONCLUSION 
The study has shown that there is a reason to 

conduct ultrafiltration concentration of curd whey after 
it has been subjected to electroflotation treatment. 

Improved organoleptic properties of floated whey 
allow using ultrafiltration not only to produce whey 
protein concentrates with a high concentration factor, 
yet also to make base for yogurt, dairy drinks, and 
jellies with a higher content of whey proteins. At the 
same time it is possible not to exceed the concentration 
factor of 2–2.5, which reduces the load on the 
ultrafiltration equipment and decreases its elements, 
membranes first of all, contamination with protein.  
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