Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Uglich, Russian Federation
Psychrotrophic Pseudomonas bacteria cause microbial spoilage of fresh cheese, manifested as blue pigmentation on its surface. This and other undesirable characteristics reduce the quality and shelf-life of cheese. This comprehensive microbiological research featured dairy products with signs of spoilage: raw milk, intermediate products of milk processing, and cheese. We isolated bacteria of the genus Pseudomonas from various stages of pasteurized milk production using different approaches to monitoring a dairy plant. On storage day 28, cheese with blue curd grains still complied with the microbiological standards (TR CU 033/2013), but failed to pass the sensory evaluation. Pseudomonas fluorescens, which were found responsible for the blue pigment, entered the dairy plant with raw milk, whose contamination level ranged from 4,0×103 to 1,0×105 CFU/g. The raw cream with 10% fat produced at the same dairy plant had 4,0×106 CFU/g, which means that pasteurization reduced the bacterial contamination but provided no protection. Moreover, eight out of fourteen washing samples from the technological equipment contained thirteen pseudomonad species. Of these, nine belonged to Ps. . Bacteria of the genus Pseudomonas proved to be a major microbial spoilage threat to dairy products. The article also introduces hazardous factors, objects of technological control, control assessment indicators, and measures against blue coloration of curd grain caused by Ps. fluorescens.
dairy spoilage, curd grain, cream, Pseudomonas, blue pigment, pasteurization, washings from production
1. Zhang, N. Nutrient losses and greenhouse gas emissions from dairy production in China: Lessons learned from historical changes and regional differences / N. Zhang [et al.] // Science of the Total Environment. 2017. Vol. 598. P. 1095–1105. https://doi.org/10.1016/j.scitotenv.2017.04.165
2. Dash, K. K. A comprehensive review on heat treatments and related impact on the quality and microbial safety of milk and milk-based products / K. K. Dash [et al.] // Food Chemistry Advances. 2022. Vol. 1. 100041. https://doi.org/10.1016/j.focha.2022.100041
3. del Olmo, A. The blue discoloration of fresh cheeses: A worldwide defect associated to specific contamination by Pseudomonas fluorescens / A. del Olmo, J. Calzada, M. Nuñez // Food Control. 2018. Vol. 86. P. 359–366. https://doi.org/10.1016/j.foodcont.2017.12.001
4. da Silva Rodrigues, R. Comparative genomic and functional annotation of Pseudomonas spp. genomes responsible for blue discoloration of Brazilian fresh soft cheese / R. da Silva Rodrigues [et al.] // International Dairy Journal. 2023. Vol. 140. 105605. https://doi.org/10.1016/j.idairyj.2023.105605
5. Machado, S. G. Pseudomonas spp. and Serratia liquefaciens as predominant spoilers in cold raw milk / S. G. Machado [et al.] // Journal of food science. 2015. Vol. 80(8). P. M1842–M1849. https://doi.org/10.1111/1750-3841.12957
6. Du, B. Diversity and proteolytic activity of Pseudomonas species isolated from raw cow milk samples across China / B. Du [et al.] // Science of the Total Environment. 2022. Vol. 838. 156382. https://doi.org/10.1016/j.scitotenv.2022.156382
7. Badawy, B. Prevalence of multidrug-resistant Pseudomonas aeruginosa isolated from dairy cattle, milk, environment, and workers’ hands / B. Badawy [et al.] // Microorganisms. 2023. Vol. 11(11). 2775. https://doi.org/10.3390/microorganisms11112775
8. Wedel, C. Towards low-spore milk powders: A review on microbiological challenges of dairy powder production with focus on aerobic mesophilic and thermophilic spores / C. Wedel [et al.] // International Dairy Journal. 2022. Vol. 126. 105252. https://doi.org/10.1016/j.idairyj.2021.105252
9. Saha, S. Unveiling the significance of psychrotrophic bacteria in milk and milk product spoilage-A review / S. Saha [et al.] // The Microbe. 2024. Vol. 2 100034. https://doi.org/10.1016/j.microb.2024.100034
10. Munsch-Alatossava, P. Phenotypic characterization of raw milk-associated psychrotrophic bacteria / P. Munsch-Alatossava, T. Alatossava // Microbiological Research. 2006. Vol. 161(4). P. 334–346. https://doi.org/10.1016/j.micres.2005.12.004
11. Lu, M. Spoilage of milk and dairy products / M. Lu, N. S. Wang // The microbiological quality of food. 2017. P. 151–178. https://doi.org/10.1016/B978-0-08-100502-6.00010-8
12. Vithanage, N. R. Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential / N. R. Vithanage [et al.] // International Dairy Journal. 2016. Vol. 57. P. 80–90. https://doi.org/10.1016/j.idairyj.2016.02.042
13. Martin, N. H. Symposium review: Effect of post-pasteurization contamination on fluid milk quality / N. H. Martin, K. J. Boor, M. Wiedmann // Journal of dairy science. 2018. Vol. 101(1). P. 861–870. https://doi.org/10.3168/jds.2017-13339
14. Lafarge, V. Raw cow milk bacterial population shifts attributable to refrigeration / V. Lafarge [et al.] // Applied and environmental microbiology. 2004. Vol. 70(9). P. 5644–5650. https://doi.org/10.1128/AEM.70.9.5644-5650.2004
15. Xin, L. The diversity and proteolytic properties of psychrotrophic bacteria in raw cows' milk from North China / L. Xin [et al.] // International Dairy Journal. 2017. Vol. 66. P. 34–41. https://doi.org/10.1016/j.idairyj.2016.10.014
16. Yan, M. Biofilm formation risk assessment for psychrotrophic Pseudomonas in raw milk by MALDI-TOF mass spectrometry / M. Yan [et al.] // LWT. 2023. Vol. 176. 114508. https://doi.org/10.1016/j.lwt.2023.114508
17. Paludetti, L. F. Effect of Pseudomonas fluorescens proteases on the quality of Cheddar cheese / L. F. Paludetti [et al.] // Journal of Dairy Science. 2020. Vol. 103. № 9. P. 7865–7878. https://doi.org/10.3168/jds.2019-18043
18. Wongyoo, R. Isolation of bacteriophages specific to Pseudomonas mosselii for controlling milk spoilage / R. Wongyoo [et al.] // International Dairy Journal. 2023. Vol. 145. 105674. https://doi.org/10.1016/j.idairyj.2023.105674
19. Zarei, M. Identification, phylogenetic characterisation and proteolytic activity quantification of high biofilm-forming Pseudomonas fluorescens group bacterial strains isolated from cold raw milk / M. Zarei [et al.] // International Dairy Journal. 2020. Vol. 109. 104787. https://doi.org/10.1016/j.idairyj.2020.104787
20. Garrido-Sanz, D. Genomic and genetic diversity within the Pseudomonas fluorescens complex / D. Garrido-Sanz [et al.] // PloS one. 2016. Vol. 11(2). e0150183. https://doi.org/10.1371/journal.pone.0150183
21. Du, B. Pseudomonas isolates from raw milk with high level proteolytic activity display reduced carbon substrate utilization and higher levels of antibiotic resistance / B. Du [et al.] // LWT. 2023. Vol. 181. 114766. https://doi.org/10.1016/j.lwt.2023.114766
22. Saraiva, B. B. Reducing Pseudomonas fluorescens in milk through photodynamic inactivation using riboflavin and curcumin with 450 nm blue light-emitting diode / B. B. Saraiva [et al.] // International Dairy Journal. 2024. Vol. 148. 105787. https://doi.org/10.1016/j.idairyj.2023.105787
23. Colantuono, A. Milk substrates influence proteolytic activity of Pseudomonas fluorescens strains / A. Colantuono [et al.] // Food Control. 2020. Vol. 111. 107063. https://doi.org/10.1016/j.foodcont.2019.107063
24. Chang, G. Characterization of Pseudomonas spp. and in situ spoilage potential in pasteurized milk production process / contamination G. Chang [et al.] // Food Research International. 2024. Vol. 188. 114463. https://doi.org/10.1016/j.foodres.2024.114463
25. Boran, R. Partial purification and characterization of the organic solvent-tolerant lipase produced by Pseudomonas fluorescens RB02-3 isolated from milk / R. Boran, A. Ugur // Preparative Biochemistry & Biotechnology. 2010. Vol. 40(4). P. 229–241. https://doi.org/10.1080/10826068.2010.488929
26. Fusco, V. Microbial quality and safety of milk and milk products in the 21st century / V. Fusco [et al.] // Comprehensive Reviews in Food Science and Food Safety. 2020. Vol. 19. № 4. P. 2013–2049. https://doi.org/10.1111/1541-4337.12568
27. Bekker, A. Lipid breakdown and sensory analysis of milk inoculated with Chryseobacterium joostei or Pseudomonas fluorescens / A. Bekker [et al.] // International dairy journal. 2016. Vol. 52. P. 101–106. https://doi.org/10.1016/j.idairyj.2015.09.003
28. Carminati, D. Investigation on the presence of blue pigment-producing Pseudomonas strains along a production line of fresh mozzarella cheese / D. Carminati [et al.] // Food Control. 2019. Vol. 100. P. 321–328. https://doi.org/10.1016/j.foodcont.2019.02.009
29. Carrascosa, C. Identification of the Pseudomonas fluorescens group as being responsible for blue pigment on fresh cheese / C. Carrascosa [et al.] // Journal of Dairy Science. 2021. Vol. 104(6). P. 6548–6558. https://doi.org/10.3168/jds.2020-19517
30. Carrascosa, C. Blue pigment in fresh cheese produced by / C. Carrascosa [et al.] // Food Control. 2015. Vol. 54. P. 95–102. https://doi.org/10.1016/j.foodcont.2014.12.039
31. El-Fouly, M. Z. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa / M. Z. El-Fouly [et al.] // Journal of Radiation Research and Applied Sciences. 2015. Vol. 8(1). P. 36–48. https://doi.org/10.1016/j.jrras.2014.10.007
32. Jayaseelan, S. Pyocyanin: production, applications, challenges and new insights / S. Jayaseelan, D. Ramaswamy, S. Dharmaraj // World Journal of Microbiology and Biotechnology. 2014. Vol. 30. P. 1159–1168. https://doi.org/10.1007/s11274-013-1552-5
33. Vithanage, N. R. Comparison of identification systems for psychrotrophic bacteria isolated from raw bovine milk / N. R. Vithanage [et al.] // International Journal of Food Microbiology. 2014. Vol. 189. P. 26–38. https://doi.org/10.1016/j.ijfoodmicro.2014.07.023
34. Castro, M. S. R. Modelling Pseudomonas fluorescens and Pseudomonas aeruginosa biofilm formation on stainless steel surfaces and controlling through sanitisers / M. S. R. Castro [et al.] // International Dairy Journal. 2021. Vol. 114. 104945. https://doi.org/10.1016/j.idairyj.2020.104945
35. Rossi, C. Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry / C. Rossi [et al.] // Food Control. 2018. Vol. 86. P. 241–248. https://doi.org/10.1016/j.foodcont.2017.11.018
36. Yuan, L. Psychrotrophic bacterial populations in Chinese raw dairy milk / L. Yuan [et al.] // LWT. 2017. Vol. 84. P. 409–418. https://doi.org/10.1016/j.lwt.2017.05.023
37. Meng, L. Identification and proteolytic activity quantification of Pseudomonas spp. isolated from different raw milks at storage temperatures / L. Meng [et al.] // Journal of Dairy Science. 2018. Vol. 101(4). P. 2897–2905. https://doi.org/10.3168/jds.2017-13617
38. Mathew, A. Production optimization, characterization and antimicrobial activity of pyocyanin from Pseudomonas aeruginosa SPC B 65 / A. Mathew, A. N. Eldo, A. G. Molly // BioTechnology: An Indian Journal. 2011. Vol. 55. P. 297–301
39. Indriatmoko, I. Protonation and Thermostability Studies of Pyocyanin from Pseudomonas aeruginosa / I. Indriatmoko [et al.] // Conference: Ma Chung Research Center for Photosynthetic Pigment. 2012.




