EXOPOLYSACCHARIDES OF LACTIC ACID BACTERIA: FUNCTIONS AND RESEARCH METHODS
Abstract and keywords
Abstract (English):
Most lactic acid bacteria synthesize exopolysaccharides during fermentation. Exopolysaccharides improve the stability and sensory profile of finished products by acting as thickeners or prebiotics. Exopolysaccharides are biologically active: they have antioxidant, immunomodulatory, and antitumor properties, as well as improve intestinal microbiota and reduce cholesterol. Polysaccharides of lactic acid bacteria meet the growing global demand for natural functional foods. Modern starter cultures can improve the sensory and rheological characteristics of the product. Exopolysaccharideproducing bacteria improve the quality of starter cultures. The nutrient medium composition (carbon, nitrogen, vitamins, minerals) and cultivation conditions (temperature, pH) affect the biosynthesis and yield of exopolysaccharides. They depend on the genus and species of lactic acid bacteria. Exopolysaccharides of lactic acid bacteria intensify dairy fermentation and reduce curd formation time, as well as stimulate the growth of associated probiotic microflora and the synthesis of beneficial metabolites. Studies of molecular composition and structure of exopolysaccharide-producing bacteria make it possible to explore the beneficial properties of polysaccharides, apply them in medicine, develop new functional starters, improve food quality, etc. This article reviews the most popular methods of exopolysaccharide studies, including their structure and monosaccharide composition.

Keywords:
exopolysaccharides, lactic acid bacteria, chemical structure, biosynthesis, biological activity, molecular weight
Text
Text (PDF): Read Download
References

1. Ganina, V. I. Analiz zarubezhnyh issledovaniy v oblasti molochnokislyh bakteriy, sinteziruyuschih ekzopolisaharidy / V. I. Ganina, T. V. Rozhkova // Izvestiya vysshih uchebnyh zavedeniy. Pischevaya tehnologiya. 2005. № 5–6. S. 65–66. https://elibrary.ru/mnmiyp

2. Khalil, M. A. Exploring the therapeutic potentials of exopolysaccharides derived from lactic acid bacteria and bifidobacteria: Antioxidant, antitumor, and periodontal regeneration / M. A. Khalil [et al.] // Frontiers in Microbiology. 2022. Vol. 13. 803688. https://doi.org/10.3389/fmicb.2022.803688

3. Kavitake, D. Antipathogenic potentials of exopolysaccharides produced by lactic acid bacteria and their food and health applications / D. Kavitake [et al.] // Food Control. 2023. Vol. 152. 109850. https://doi.org/10.1016/j.foodcont.2023.109850

4. Zhang, Y. The effect of optimized carbon source on the synthesis and composition of exopolysaccharides produced by Lactobacillus paracasei / Y. Zhang [et al.] // Journal of Dairy Science. 2021. Vol. 104(4). P. 4023–4032. https://doi.org/10.3168/jds.2020-1944

5. Andrew, M. Molecular characterization and biocompatibility of exopolysaccharide produced by moderately halophilic bacterium Virgibacillus dokdonensis from the saltern of Kumta Coast / M. Andrew, G. Jayaraman // Polymers. 2022. Vol. 14(19). 3986. https://doi.org/10.3390/polym14193986

6. Fuso, A. Feeding lactic acid bacteria with different sugars: Effect on exopolysaccharides (eps) production and their molecular characteristics / A. Fuso [et al.] // Foods. 2023. Vol. 12(1). 215. https://doi.org/10.3390/foods12010215

7. Yadav, M. K. Methods for detection, extraction, purification, and characterization of exopolysaccharides of lactic acid bacteria—A systematic review / M. K. Yadav [et al.] // Foods. 2024. Vol. 13(22). 3687. https://doi.org/10.3390/foods13223687

8. Ruas-Madiedo, P. Invited review: Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria / P. Ruas-Madiedo, C. G. de los Reyes-Gavilán // Journal of Dairy Science. 2005. Vol. 88(3). P. 843–856. https://doi.org/10.3168/jds.S0022-0302(05)72750-8

9. Mozzi, F. Diversity of heteropolysaccharide-producing lactic acid bacterium strains and their biopolymers / F. Mozzi [et al.] // Applied and Environmental Microbiology. 2006. Vol. 72(6). P. 4431–4435. https://doi.org/10.1128/AEM.02780-05

10. Van der Meulen, R. Screening of lactic acid bacteria isolates from dairy and cereal products for exopolysaccharide production and genes involved / R. Van der Meulen [et al.] // International Journal of Food Microbiology. 2007. Vol. 118(3). P. 250–258. https://doi.org/10.1016/j.ijfoodmicro.2007.07.014

11. Bancalari, E. Impedance microbiology to speed up the screening of lactic acid bacteria exopolysaccharide production / E. Bancalaria [et al.] // International Journal of Food Microbiology. 2019. Vol. 306. 108268. https://doi.org/10.1016/j.ijfoodmicro.2019.108268

12. Nguyen, P. T. Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications / P. T. Nguyen [et al.] // AIMS Microbiology. 2020. Vol. 6(4). P. 451–469. https://doi.org/10.3934/MICROBIOL.2020027

13. Malaka, R. Assessment of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus ropy strain in different substrate media / R. Malaka [et al.] // Foo Science & Nutrition. 2020. Vol. 8(3). P. 1657–1664. https://doi.org/10.1002/fsn3.1452

14. Pozhidaeva, E. A. Issledovanie ekzopolisaharidnogo potenciala shtammov probioticheskih mikroorganizmov / E. A. Pozhidaeva [i dr.] // Tehnologii pischevoy i pererabatyvayuschey promyshlennosti APK – produkty zdorovogo pitaniya. 2024. № 3. S. 112–117. https://doi.org/10.24412/2311-6447-2024-3-112-117; https://elibrary.ru/cprjbv

15. Yilmaz, M. T. Effect of in situ exopolysaccharide production on physicochemical, rheological, sensory, and microstructural properties of the yogurt drink ayran: An optimization study based on fermentation kinetics / M. T. Yilmaz // Journal of Dairy Science. 2015. Vol. 3 (98). P. 1604–1624. https://doi.org/10.3168/jds.2014-8936

16. Nehal, F. Characterization, high production and antimicrobial activity of exopolysaccharides from Lactococcus lactis F-mou / F. Nehal [et al.] // Microbial Pathogenesis. 2019. Vol. 132. P. 10–19. https://doi.org/10.1016/j.micpath.2019.04.018; https://elibrary.ru/xauowi

17. Sanalibaba, P. Exopolysaccharides production by lactic acid bacteria / P. Sanalibaba, G. A. Cakmak // Applied Microbiology: Open Access. 2016. Vol. 2(2). 1000115. https://doi.org/10.4172/2471-9315.1000115

18. Bibi, A. Recent advances in the production of exopolysaccharide (EPS) from Lactobacillus spp. and its application in the food industry: A review / A. Bibi [et al.] // Sustainability. 2021. Vol. 13(22). https://doi.org/10.3390/su132212429

19. Kusmiati, K. Effect of sodium acetate and trace element (Se2+, Zn2+) on exopolysaccharide production by Lactobacillus plantarum and promote antioxidant capacity / K. Kusmiati [et al.] // Lactobacillus - A Multifunctional Genus. Ed. by M. Laranjo. – IntechOpen, 2023. – 184 p. https://doi.org/10.5772/intechopen.104547

20. Cui, Y. New advances in exopolysaccharides production of Streptococcus thermophilus / Y. Cui [et al.] // Archives of Microbiology. 2017. Vol. 199(6). P. 799–809. https://doi.org/10.1007/s00203-017-1366-1

21. Polak-Berecka, M. Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources / M. Polak-Berecka [et al.] // Carbohydrate Polymers. 2015. Vol. 117. P. 501–509. https://doi.org/10.1016/j.carbpol.2014.10.006

22. Bertsch, A. Enhanced exopolysaccharide production by Lactobacillus rhamnosus in co-culture with Saccharomyces cerevisiae / A. Bertsch, D. Roy, G. Lapointe // Applied Sciences (Switzerland). 2019. Vol. 9(19). 4026. https://doi.org/10.3390/app9194026

23. Korcz, E. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry / E. Korcz, L. Varga // Trends in Food Science & Technology. 2021. Vol. 110. P. 375–384. https://doi.org/10.1016/j.tifs.2021.02.014

24. Prete, R. Lactic acid bacteria exopolysaccharides producers: A sustainable tool for functional foods / R. Prete [et al.] // Foods. 2021. Vol. 10(7). 1653. https://doi.org/10.3390/foods10071653

25. Sorensen, H. M. Exopolysaccharides of lactic acid bacteria: Production, purification and health benefits towards functional food / H. M. Sorensen [et al.] // Nutrients. 2022. Vol. 14(14). 2938. https://doi.org/10.3390/nu14142938

26. Li, D. The influence of fermentation condition on production and molecular mass of EPS produced by Streptococcus thermophilus 05-34 in milk-based medium / D. Li [et al.] // Food Chemistry. 2016. Vol. 197. P. 367–372. https://doi.org/10.1016/j.foodchem.2015.10.129

27. Oleksy-Sobczak, M. Optimization of media composition to maximize the yield of exopolysaccharides production by Lactobacillus rhamnosus strains / M. Oleksy-Sobczak, E. Klewicka // Probiotics and Antimicrobial Proteins. 2019. Vol. 12. P. 774–783. https://doi.org/10.1007/s12602-019-09581-2

28. Golovach, O. S. Ocenka sposobnosti producirovaniya ekzopolisaharidov molochnokislymi mikroorganizmami kachestvennym metodom / O. S. Golovach [i dr.] // Aktual'nye voprosy pererabotki myasnogo i molochnogo syr'ya. 2019. № 13. S. 39–46. https://elibrary.ru/nzaafvNZAAFV.

29. London, L. E. E. Use of Lactobacillus mucosae DPC 6426, an exopolysaccharide-producing strain, positively influences the techno-functional properties of yoghurt / L. E. E. London [et al.] // International Dairy Journal. 2015. Vol. 40. P. 33–38. https://doi.org/10.1016/j.idairyj.2014.08.011

30. Li, C. Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains / C. Li [et al.] // LWT - Food Science and Technology. 2014. Vol. 57(2). P. 477–485. https://doi.org/10.1016/j.lwt.2014.02.025

31. Wang, J. Solation and characterization of exopolysaccharide-producing Lactobacillus plantarum SKT 109 from Tibet Kefir / J. Wang [et al.] // Polish Journal of Food and Nutrition Sciences. 2015. Vol. 65(4). P. 269–279. https://doi.org/10.1515/pjfns-2015-0023

32. Leroy, F. Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health / F. Leroy, L. De Vuyst // Journal of Dairy Science. 2016. Vol. 99(4). P. 3229–3238. https://doi.org/10.3168/jds.2015-9936

33. Buksa, K. Extraction, purification and characterisation of exopolysaccharides produced by newly isolated lactic acid bacteria strains and the examination of their influence on resistant starch formation / K. Buksa, M. Kowalczyk, Ja. Boreczek // Food Chemistry. 2021. Vol. 362. 130221. https://doi.org/10.1016/j.foodchem.2021.130221

34. Lynch, K. M. Isolation and characterisation of exopolysaccharide-producing Weissella and Lactobacillus and their application as adjunct cultures in Cheddar cheese / K. M. Lynch [et al.] // International Dairy Journal. 2014. Vol. 34(1). https://doi.org/10.1016/j.idairyj.2013.07.013

35. Tang, W. Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1 / W. Tang [et al.] // Carbohydrate Polymers. 2017. Vol. 173. P. 654–664. https://doi.org/10.1016/j.carbpol.2017.06.039

36. Dubois, M. A colorimetric method for the determination of sugars / M. Dubois [et al.] // Nature. 1951. Vol. 4265(168). 167. https://doi.org/10.1038/168167a0

37. Cerning, J. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria / J. Cerning [et al.] // Journal of Dairy Science. 1992. Vol. 75. P. 692–699. https://doi.org/10.3168/JDS.S0022-0302%2892%2977805-9

38. Nwosu, I. G. Production of microbial exopolysaccharide by cost-effective medium opimization method / I. G. Nwosu, G. O. Abu, K. O. Agwa // Journal of Advances in Microbiology. 2019. Vol. 19(2). P. 1–13. https://doi.org/10.9734/jamb/2019/v19i230189

39. Maunatin, A. The isolation of exopolysaccharide-producing lactic acid bacteria from lontar (Borassus flabellifer L.) sap / A. Maunatin [et al.] // Iranian Journal of Microbiology. 2020. Vol. 12(5). P. 437–444. https://doi.org/10.18502/ijm.v12i5.4605

40. Macedo, M. G. Quantification of exopolysaccharide, lactic acid, and lactose concentrations in culture broth by near-infrared spectroscopy / M. G. Macedo, M. F. Laporte, C. Lacroix // Journal of Agricultural and Food Chemistry. 2002. Vol. / 50(7). P. 1774–1779. https://doi.org/10.1021/jf0110093

41. Wolter, A. Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours // Food Microbiology. 2014. Vol. 37. P. 44–50. https://doi.org/10.1016/j.fm.2013.06.009

42. Zhu, Y. Exopolysaccharides produced by yogurt-texture improving Lactobacillus plantarum RS20D and the immunoregulatory activity / Y. Zhu [et al.] // International Journal of Biological Macromolecules. 2019. Vol. 121. P. 342–349. https://doi.org/10.1016/j.ijbiomac.2018.09.201

43. Tukenmez, U. The relationship between the structural characteristics of lactobacilli-EPS and its ability to induce apoptosis in colon cancer cells in vitro / U. Tukenmez [et al.] // Scientific Reports. 2019. Vol. 9(1). 8268. https://doi.org/10.1038/s41598-019-44753-8

44. Chen, Y.-C. Monosaccharide composition influence and immunomodulatory effects of probiotic exopolysaccharides / Y.-C. Chen, Y.-J. Wu, C.-Y. Hu // International Journal of Biological Macromolecules. 2019. Vol. 133. P. 575–582. https://doi.org/10.1016/j.ijbiomac.2019.04.109

45. Abid, Y. Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria / Y. Abida [et al.] // International Journal of Biological Macromolecules. 2018. Vol. 108. P. 719–728. https://doi.org/10.1016/j.ijbiomac.2017.10.155

46. Kanauchi, M. Lactic acid bacteria / M. Kanauchi. – New York: Springer New York, 2019. – 194 p. https://doi.org/10.1007/978-1-4939-8907-2

47. Wei, D. Research methods for structural analysis of lactic acid bacteria induced exopolysaccharides / D. Wei [et al.] // Chinese Journal of Analytical Chemistry. 2018. Vol. 6(46). P. 875–888. https://doi.org/10.1016/S1872-2040(18)61091-6

48. De Vuyst, L. Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis / L. De Vuyst [et al.] // Journal of Applied Microbiology. 1998. Vol. 84(6). P. 1059–1068. https://doi.org/10.1046/j.1365-2672.1998.00445.x

Login or Create
* Forgot password?