ИССЛЕДОВАНИЕ НЕПРЕРЫВНОГО ПРОЦЕССА АДСОРБЦИОННОГО РЕГУЛИРОВАНИЯ ПОЛИФЕНОЛЬНОГО СОСТАВА ПИВНОГО СУСЛА ДЛЯ ПОВЫШЕНИЯ КАЧЕСТВА ПИВА
Аннотация и ключевые слова
Аннотация (русский):
Одним из путей решения задачи повышения коллоидной стабильности и органолептических показателей пива является регулирование содержания полифенольных соединений в неохмеленном пивном сусле адсорбционным методом на углеродных сорбентах. При этом сорбционные процессы реализуются преимущественно динамическим способом. Для подтверждения возможности применения дешевых углеродных сорбентов - полукоксов марок АБГ и «Пуролат-Стандарт» изучена адсорбция полифенольных соединений из неохмеленного пивного сусла в динамических условиях на данных углеродных сорбентах. На основе полученных данных рекомендован для практической реализации и моделирования процесса адсорбционного извлечения в динамических условиях углеродный сорбент марки «Пуролат-Стандарт». Экспериментально подтверждена возможность моделирования процесса регулирования состава неохмеленного пивного сусла на углеродном адсорбенте марки «Пуролат-Стандарт». Предложен метод расчета параметров фильтра и режимов процесса адсорбции полифенольных соединений из неохмеленного пивного сусла. Метод основан на использовании уравнения внешнедиффузионной динамики адсорбции для случая линейной изотермы с применением адсорбционных констант уравнения Дубинина-Радушкевича и данных кинетических исследований. Рассчитаны рациональные параметры фильтра и режимы адсорбционного регулирования полифенольного состава пивного сусла, позволяющие повысить коллоидную стабильность и улучшить органолептические показатели пива. Предложен способ регенерации отработанного углеродного сорбента марки «Пуролат-Стандарт» после адсорбционного извлечения полифенольных соединений из неохмеленного пивного сусла. Установлена зависимость скорости фильтрования от исходного содержания полифенольных соединений в пивном сусле. Рекомендовано аппаратурное оформление и режимы работы установки, обеспечивающие повышение качества пива путем регулирования полифенольного состава неохмеленного пивного сусла.

Ключевые слова:
Пивное сусло, полифенольные соединения, адсорбция, качество
Текст
Текст (PDF): Читать Скачать

Одной из актуальных задач пивоваренной промышленности является разработка новых технологий, позволяющих повысить качество пива [1]. Извлечение полифенольных соединений из пивного сусла сорбентами представляет собой один из путей решения этой задачи и позволяет повысить коллоидную стабильность и органолептические показатели пива. К полифенолам относят широкий спектр соединений с одной и более фенольными группами. Фенольные соединения растительного происхождения представляют собой весьма пеструю группу органических соединений, неоднородную по химическому строению, включающую сложные полимерные соединения, состоящие из множества мономерных фенольных соединений [4, 5]. Активные угли нашли широкое применение в различных отраслях пищевой промышленности для улучшения качества готовой продукции, в том числе и для производства пива. В практике производства пива, как правило, применяется древесный дробленый уголь марки БАУ-А. Однако исследования последних лет показывают, что довольно дорогие промышленные сорбенты могут быть заменены на полукоксы. В частности, новые выпускаемые промышленностью сорбенты - полукоксы марок «Пуролат-Стандарт» и АБГ обладают достаточно высокой емкостью и дешевизной. Сорбционные процессы реализуются преимущественно динамическим способом - направленным пропусканием исходного пивного сусла через неподвижный слой углеродного сорбента. Такой способ обеспечивает удаление полифенольных соединений вследствие последовательного контакта сусла со слоями сорбента [6]. При этом целесообразно подвергать обработке неохмеленное сусло, поскольку негативное воздействие на готовый продукт оказывают в большей степени полифенольные соединения солода, чем хмеля. Целью работы являлся расчет рациональных параметров и режимов процесса адсорбции, обеспечивающих повышение качества пива путем регулирования полифенольного состава пивного сусла. Объекты и методы исследования Изучение динамики адсорбции проводилось на неохмеленном пивном сусле производства ТД «Золотая сова» (г. Кемерово). В качестве сорбционного материала применялись полукоксы «Пуролат-Стандарт» (ОАО «Синтез», г. Ростов-на-Дону) и АБГ (ПО «Карбоника Ф», г. Красноярск). Извлечение полифенолов в динамических условиях исследовалось при комнатной температуре (23±2) °С. Через стеклянную колонну, загруженную полукоксом с определенным диаметром и длиной адсорбционного слоя, пропускалось сусло с известной концентрацией полифенольных соединений с постоянной скоростью фильтрации. В каждой порции фильтрата определялось содержание адсорбтива. Концентрация полифенолов определялась методом Еруманиса на основании измерения оптической плотности при 600 нм на фотоколориметре КФК-2М. Метод базируется на том, что полифенолы пивного сусла реагируют с ионами железа в щелочных растворах с образованием окрашенного раствора [7]. Результаты и их обсуждение Экспериментальные кривые адсорбции полифенольных соединений полукоксами марок АБГ и «Пуролат-Стандарт» из пивного сусла представлены на рис. 1. Рис. 1. Экспериментальные выходные кривые динамики адсорбции полифенольных соединений из пивного сусла на углеродном сорбенте: 1 - АБГ; 2 - «Пуролат-Стандарт» Как показано на рис. 1, при исследовании динамики адсорбции на различных углях время проскока у сорбента марки «Пуролат-Стандарт» больше. Этот факт, а также более высокая адсорбционная емкость позволяют рекомендовать полукокс «Пуролат-Стандарт» для практической реализации и моделировать процесс сорбции в динамических условиях на данном полукоксе. Выбор рациональных режимов непрерывного адсорбционного извлечения и параметров промышленного адсорбционного фильтра включает в себя проведение ряда экспериментальных исследований. Значительных затрат времени требует подбор параметров и получение выходных экспериментальных кривых, зависящих от одной варьируемой переменой при других неизменных. Для этого требуются значительные затраты времени. Расчет параметров динамики адсорбции, осуществленный на основе теоретических зависимостей, описывающих массоперенос, существенно сокращает количество экспериментальных исследований. Метод базируется на уравнении внешнедиффузионной динамики адсорбции с применением адсорбционных констант уравнения Дубинина-Радушкевича и данных кинетических исследований. Выбор уравнения определяется степенью согласованности опытной и теоретических кривых: первая область изотермы адсорбции ; (1) вторая область изотермы адсорбции ; (2) третья область изотермы адсорбции , (3) где t - продолжительность адсорбции, с; Г0 - количество адсорбированного вещества, равновесное с концентрацией потока С0, кг/м3; υ - средняя скорость потока, м/с; С0 - начальная концентрация адсорбируемого вещества в потоке, кг/м3; L - высота слоя адсорбента, м; р = С/С0,5, С0,5 - содержание в потоке поглощаемого вещества, равновесное с половинным количеством от максимально адсорбируемого данным сорбентом; bn - коэффициент внешнего массопереноса; b = Ф-1∙(1-С/0,54∙С0); Ф-1 - функция, обратная функции Крампа. На рис. 2 приведены рассчитанные по уравнениям модели и экспериментальная кривые адсорбции полифенольных соединений на активном угле «Пуролат-Стандарт», которые показывают согласование расчетных и экспериментальных данных. Рис. 2. Выходные кривые динамики адсорбции: экспериментальная (1) и рассчитанные по уравнениям для первой (2), второй (3) и третьей (4) области изотермы адсорбции полифенольных соединений из пивного сусла на углеродном сорбенте «Пуролат-Стандарт» Проведенные исследования позволяют рекомендовать для моделирования непрерывного процесса адсорбционной очистки уравнение внешнедиффузионной динамики адсорбции для случая прямолинейной изотермы (уравнение 1). Представленные на рис. 3, 4 выходные кривые динамики адсорбции показывают зависимость времени работы фильтрующего слоя от различных параметров. Удовлетворительное совпадение экспериментальных и теоретически рассчитанных кривых подтверждает правомерность предложенного подхода к моделированию адсорбции и возможность определения динамических характеристик адсорбции без дополнительного проведения экспериментальных исследований. Рис. 3. Выходные кривые динамики адсорбции полифенолов для плотного слоя полукокса марки «Пуролат-Стандарт» (на теоретически рассчитанные кривые точками нанесены экспериментальные данные) при разных высоте слоя сорбента (Н) и скорости потока (υ): 1 - υ = 5 м/ч, Н = 1 м; 2 - υ = 5 м/ч, Н = 2 м; 3 - υ = 5 м/ч, Н = 2,5 м; 4 - υ = 5 м/ч, Н = 3 м; 5 - υ = 1 м/ч, Н = 1 м; 6 - υ = 1 м/ч, Н = 2 м; 7 - υ = 1 м/ч, Н = 2,5 м; 8 - υ = 1 м/ч, Н = 3 м Рис. 4. Выходные кривые динамики адсорбции полифенолов для плотного слоя полукокса марки «Пуролат-Стандарт» (на теоретически рассчитанные кривые точками нанесены экспериментальные данные) при разных высоте слоя сорбента (Н) и скорости потока (υ): 1 - υ = 10 м/ч, Н = 1 м; 2 - υ = 10 м/ч, Н = 2 м; 3 - υ = 10 м/ч, Н = 2,5 м; 4 - υ = 10 м/ч, Н = 3 м; 5 - υ = 2,5 м/ч, Н = 1 м; 6 - υ = 2,5 м/ч, Н = 2 м; 7 - υ = 2,5 м/ч, Н = 2,5 м; 8 - υ = 2,5 м/ч, Н = 3 м По результатам моделирования и известным формулам [8] получены динамические характеристики: длина неиспользованного слоя, длина рабочего слоя, продолжительность работы фильтра, коэффициент защитного действия и количество очищаемого сусла в зависимости от режима очистки и параметров колонны. Изучение адсорбции полифенольных компонентов в динамических условиях подтвердило возможность применения углеродного сорбента «Пуролат-Стандарт» для извлечения полифенольных компонентов пивного сусла. В результате исследования рассчитаны параметры и режимы процесса адсорбции полифенольных соединений из пивного сусла, обеспечивающие повышение коллоидной стабильности и органолептических показателей пива. Полученные данные позволяют рекомендовать аппаратурное оформление адсорбционного извлечения полифенолов. Для реализации предлагаемой технологии целесообразно использовать наиболее простые конструкции адсорбционных аппаратов периодического действия с плотным слоем полукокса «Пуролат-Стандарт». Принцип действия таких аппаратов заключается в фильтровании неохмеленного пивного сусла через неподвижный слой адсорбента до проскока в фильтрат полифенольных соединений в количестве, превышающем заданный по технологическим условиям предел. Они выполняются закрытыми, в виде стальных цилиндрических колонн, рассчитанных на давление жидкости до 6 атмосфер (рис. 5). Рис. 5. Схема вертикального напорного адсорбера: 1 - корпус; 2 - неподвижный слой активного угля; 3 - отбойник; 4 - трубопровод подачи очищаемой сточной воды; 5 - трубка для сброса воздуха; 6 - люк; 7 - трубопровод гидровыгрузки активного угля; 8 - трубопровод отвода очищенной воды; 9 - трубопровод подачи взрыхляющей воды; 10 - распределительная система труб; 11 - дренажная система Для экономичности и эффективности применения адсорбционных технологий является необходимой регенерация отработанных углеродных сорбентов, что позволит многократно использовать активный уголь. Для выбора эффективного способа восстановления адсорбционной емкости углеродного сорбента марки «Пуролат-Стандарт» после извлечения полифенольных соединений из пивного сусла регенерация активного угля проводилась в течение 3,5 ч в лабораторных условиях при расходе регенерирующего агента 100 см3/мин: паром при 180 °С, азотом при температуре 350 °С и воздухом при 300 °С. Было проведено три цикла адсорбция - регенерация. Наиболее эффективное восстановление адсорбционной емкости углеродного сорбента марки «Пуролат-Стандарт» по сравнению с другими использованными методами достигается при применении низкотемпературной термической регенерации воздухом при температуре 300 °С, что позволяет рекомендовать этот метод для использования на практике. Цикл работы предлагаемой адсорбционной установки включает стадии адсорбции и регенерации. Для организации непрерывной работы установки целесообразно применять два параллельных соединенных адсорбера. При этом на регенерацию отключается первый по движению пивного сусла фильтр, содержащий отработанный углеродный сорбент. Одновременно с этим при помощи переключения задвижек на обвязывающих трубопроводах подключают фильтр с ранее отрегенерированным полукоксом, обеспечивая постоянство условий извлечения полифенольных компонентов сусла. Благодаря такой работе фильтров обеспечивается непрерывная работа установки. Исходя из приведенных расчетных данных для частичного извлечения полифенольных соединений из неохмеленного пивного сусла с целью повышения качества пива на предприятиях пивоваренной промышленности могут быть рекомендованы фильтры, представляющие собой колонны, загруженные полукоксом «Пуролат-Стандарт», имеющие следующие параметры: высота фильтра - 3 м, диаметр фильтра - 2 м. При этом в зависимости от начального содержания полифенолов в пивном сусле скорость фильтрования можно изменять в пределах 1-2 м/ч. В данных условиях реализуется производительность установки от 3 до 5 м3/ч. В связи с тем, что содержание полифенолов в необработанном неохмеленном сусле может отличаться, для достижения их концентрации в сусле 175-185 мг/дм3 [9] необходимо регулировать скорость потока и продолжительность работы фильтра с помощью датчиков концентрации. Экспериментально установлена зависимость скорости фильтрования от исходного содержания полифенолов в сусле с учетом подобранной концентрации (табл. 1). Таблица 1 Зависимость скорости фильтрования от исходного содержания полифенолов в сусле Линейная скорость потока, м/ч Исходное содержание полифенолов в сусле, мг/дм3 1 280-300 1,25 250-270 1,5 220-240 1,75 200-210 2 180-190 Время работы каждого фильтра с данными параметрами составляет в среднем месяц при производительности пивоваренного завода 2,7 млн. дал пива в год, после чего требуется регенерация углеродных сорбентов. Проведенные исследования позволяют рекомендовать на предприятиях пивоваренной промышленности аппаратурное оформление процесса регулирования содержания полифенольных соединений в неохмеленном пивном сусле и режимы работы адсорбционной установки.
Список литературы

1. Key processes management in development and implementation of management systems at food enterprises / A.Yu. Prosekov, I.V. Surkov, E.O. Ermolaeva, G.A. Gorelikova, V.M. Poznyakovskiy // Life Science Jornal. - 2014. - №12. - P. 300-304.

2. Просеков, А.Ю. Влияние технологической обработки продовольственного сырья на эффективность видовой идентификации / А.Ю. Просеков, Ю.В. Голубцова, К.А. Шевякова // Пищевая промышленность. - 2014. - №6. - С. 8-10.

3. Меледина, Т.В. Коллоидная стойкость пива / Т.В. Меледина, А.Т. Дедегкаев. - СПб.: НИУ ИТМО; ИХиБТ, 2014. - 90 с.

4. Флавоноиды: биохимия, биофизика, медицина / Ю.С. Тараховский, Ю.А. Ким, Б.С. Абдрасилов, Е.Н. Музафаров; под общ. ред. Е.И. Маевского. - Пущино: Sуnchrobook, 2013. - 310 c.

5. Кунце, В. Технология солода и пива / В. Кунце, Г. Мит. - СПб.: Профессия, 2007. - 520 с.

6. Динамика адсорбции фенобарбитала в неподвижном слое активированных углей / И.Ф. Ляпин, О.В. Кабанов, С.В. Каленов, Г.Л. Данилов, А.Н. Трушин // Успехи в химии и химической технологии. - 2007. - Т. XXI. - № 2 (70). - С. 99-104.

7. Ермолаева, Г.А. Справочник работника лаборатории пивоваренного предприятия / Г.А. Ермолаева. - СПб.: Профессия, 2004. - 536 с.

8. Павлов, К.Ф. Примеры и задачи по курсу процессов и аппаратов химической технологии / К.Ф. Павлов, П.Г. Романков, А.А. Носков. - М.: ООО ТИД «Альянс», 2005. - 576 с.

9. Гора, Н.В. Исследование влияния природы АУ на извлечение полифенолов из сусла / Н.В. Гора, Н.С. Голубева, Н.С. Черкасова // Потребительский рынок: качество и безопасность продовольственных товаров: материалы VII Международной научно-практической интернет-конференции. - Орел, 2013. - С. 28-29.


Войти или Создать
* Забыли пароль?